

Conflicts of interest

Financial or property interests

None

Activities for the pharmaceutical industry and other healthcare companies
 None

Funds provided by third parties / donations

None

Personal relationships

None

Other affiliations

None

Clinical case

87-year-old patient (160 cm, 44 kg) brought by her daughter due to a **decline in her general condition for 2** weeks and describes herself **as very weak for 7 days**. She **has not eaten for 5 days** and **is hydrating very little**. She does not report fever or cardio-respiratory symptoms. On arrival, the patient is hemodynamically compensated, febrile and eupneic in ambient air. **A SARS-CoV-2 infection is retained**.

Active comorbidities

- Bipolarity disorder
- Hypothyroidism
- Chronic renal failure KDIGO G3b
- Gait and balance disorders with repeated falls
- Osteoporosis
- Arthrosis
- Hearing loss
- Unspecified history of bradycardia

Clinical case - November 2021

Clinical case

Primary diagnosis

SARS-CoV-2 infection

Secondary diagnosis

- Upper urinary tract infection with undetermined germ
- Acute renal failure (pre-renal origin)
- Severe hypernatremia (177 mmol/L) at day 9
- Acute hypoactive confusional state
- Insufficiently substituted hypothyroidism
- Urinary incontinence
- Undated left ankle sprain

Treatment the day of the medical visit

Day 19

Commercial name	INN	Galenic	Dosage	Route of administration
Calciparine® 5000 UI/0.2 mL	Heparin calcium	Inicatable calution	1-0-1-0	SC
Glucose 5%	Glucose	Injectable solution	Continously	IV
Eltroxine-LF® 0.05 mg	Levothyroxine	Tablet	1-0-0-0 fasting	
Lithiofor® 660 mg	Lithium	Cutoud valoosa tablet	1/4-0-1/4-0	
Quétiapine XR 50 mg	Quetiapine	Extend release tablet	0-0-1-0/ <u>suspended</u>	
Supradyn Energy®	Polyvitamines et minerals	Effervescent tablet	1-0-0-0	PO
Phosphate Sandoz® 500 mg	Sodium phosphate	Enervescent tablet	1-0-1-0 / <u>suspended</u>	1 PO
Importal®	Lactitol		20 mL 1x/day	
Ensure Plus®	Lipids, carbon hydrates, proteins, minerals	Solution	200 mL 2x/day	
		Reserve		
Dafalgan® 500 mg	Paracetamol	Tablet	1-1-1-1 max	
Quétiapine 25 mg	Quetiapine	rablet	½ 2x/day max if agitating	
Movicol®	Macrogols	Powder	1 bag 2x/day max	PO
Laxoberon® 7.5 mg/mL	Picosulfate		20 drops 1x/day max	1 PO
Distraneurin® 31.5 mg/mL	Clomethiazole	Calutian	6 mL 1x/day max	
Resyl Plus®	Guaïfenesine & codeine	Solution	20 drops max 2x/day	
Importal®	Lactitol		0.45 mL max 1x/day	
Freka-Clyss®	Sodium mono- & di- hydrogen phosphate	Enema	Max. 1x/day	IR

Clinical case - November 2021 5

Visit day

Labs and vital parameters

	Standards	D-1	D-2	D-5	D-9	D-10	D-11	D-13	D-16	D-17	D-18	D-19
Potassium	[3.5-4.6 mmol/L]	4	3,9	4,2	4,2	3,3	3,5	3,2	5,5	5,2	4,8	4,6
Calcium corr.	[2.10-2.50 mmol/L]		2,32									2,35
Magnesium total	[0.65-1.10 mmol/L]	0,95			1,39		1,24		0,88			0,95
Phosphate	[0.80-1.40 mmol/L]	0,83			1,44		0,70	0,70	0,94			1,05
Creatinine (Jaffé)	[44-80 micromol/L]	111	100	108	202	153	145	105	80	81	88	86
eGFR mL	/min/1.73m2	38	44	40	19	26	28	41	57	56	51	52

Date	Blood pressure (systolic and diastolic)	Heart rate
During hospitalisation	BPS: 96-105 mmHg BPD: 63-78 mmHg	67-79 bpm

Visit day

	Standards	D-0	D-1	D-2	D-4	D-9	D-10	D-11	D-12	D-13	D-14	D-15	D-16	D-17	D-18	D-19
Sodium	[135-145 mmol/L]		147	147	153	177	168	156	145	151	149	146	145	141	148	145
Osmolality (Blood)	[270-295 mmol/kg H2O]					381										305
Osmolality (Urine)	[50-1400 mmol/kg H2O]					488										394
Sodium (Urine) [mmol/L]	<u>-</u>		38			53								93		82
тѕн	[0.270-4.20 mUI/I]			1,18												10,9
T4	[12.0-22.0 pmol/L]															11,6
Lithium	[Maintenance: 0.5-0.8 mmol/L Crisis: 0.8-1.2 mmol/L]	0,7				0,9			0,5	0,4	0,4			0,4		0,6

Clinical case - November 2021 7

Reflexions in small groups (30')

- What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?
- What symptoms presented by this patient are related to Lithium? Is lithium treatment appropriate?
- What are the alternatives for treating bipolar?
- How to manage hypernatremia in our case?
- What are your clinical propositions?

30 minutes of discussion in small groups

Reflexions in small groups

- What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?
- What symptoms presented by this patient are related to Lithium? Is lithium treatment appropriate?
- What are the alternatives for treating bipolar?
- How to manage hypernatremia in our case?
- What are your clinical propositions?

What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?

- > Salts of Lithium and equivalence
- Renal function
- > Interactions
- Lithium intoxication (TDM)

- Hypercalcemia & hyperparathyroidism
- > Hypothyroidism
- Cardiac disorder
- > Other: pregnancy & weight gain

Tondo, L. et al. Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord 7, 16 (2019). Calanca A. et al. Vade-Mecum de thérapeutique psychiatrique, Ed. Médecine et hygiene, 2011. Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013

Principal salts of Lithium and equivalence

Sel (nom commercial®)	sel (mg)*	lithium (mmol)**
sulfate (Lithiofor®)	660	12
acétate (Quilonorm®)	536	8.1
carbonate (Quilonorm® retard)	450	12.2
carbonate (Priadel retard®)	400	10.8
citrate (Litarex®)	564	6

Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013

Clinical case - November 2021 11

Lithium - Renal function

- ➤ Lithium: Renal elimination ~90%.
 - ➤ Monitoring recommendation: <u>creatinine</u> before treatment and at least 1-2x/year.
- > Renal function adaptation?
 - > According to **blood concentrations of lithium** (TDM) & **clinical state**.
 - > CrCl < 30 mL/min: Avoid use

Lithium - Interactions

Medication class	Effect on lithium concentration ^a	Risk rating ^b	Comment
Diuretics			
Thiazides	$\uparrow \uparrow$	D	
Loops	$\uparrow - \uparrow \uparrow$	C	↑ Risk if elderly, medical comorbidities
K+ sparing	No effect	A	
Osmotic	$\downarrow\downarrow\downarrow$	C	
Methyl xanthine	$\downarrow\downarrow\downarrow$	C	
ACE inhibitors	$\uparrow \uparrow$	D	Delayed toxicity; ↑ risk if elderly
ARBs	↑	C	
NSAIDs	$\uparrow - \uparrow \uparrow$	C	Variable effects; caution with all
Antidepressants	No effect	В	Rare 5-HT syndrome
Antipsychotics	No effect	В	Rare neurotoxicity
AEDs	No effect	В	Rare neurotoxicity with carbamazepine
Neuromuscular blockers	No effect	C	Prolonged neuromuscular blockade
Calcium channel antagonists (blockers)	No effect	C	↑ Intracellular lithium (?)

AEDs antiepileptic drugs, ARBs angiotensin II receptor antagonists (blockers), NSAIDs non-steroidal antiinflammatory drugs

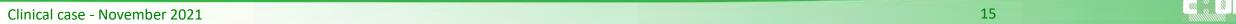
Finley, Patrick R. "Drug Interactions with Lithium: An Update." Clinical Pharmacokinetics 55 (2016): 925-941.

a Impact on lithium concentrations: \uparrow (0–20 %); $\uparrow\uparrow$ (20–40 %); $\uparrow\uparrow\uparrow$ (40–60 %); $\uparrow\uparrow\uparrow\uparrow$ (>60 %); $\downarrow\downarrow\downarrow\downarrow$ (40–60 %)

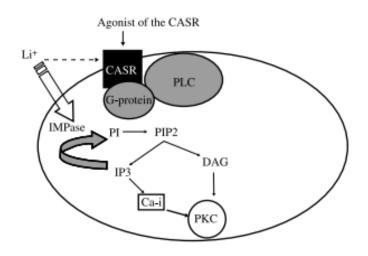

^b Risk rating adapted from Lexi-interact data fields [185]; see Table 2

Lithium intoxication

- Lithium toxicity may include weakness, tremor, mild ataxia, tinnitus, nausea, and diarrhea.
- More significant toxicity may result in **vomiting**, **gross/coarse tremor**, **slurred speech**, **confusion**, **nystagmus disorder**, **dysarthria**, **and lethargy**. If not treated, it may lead to seizure, coma, neurological damage, and death.

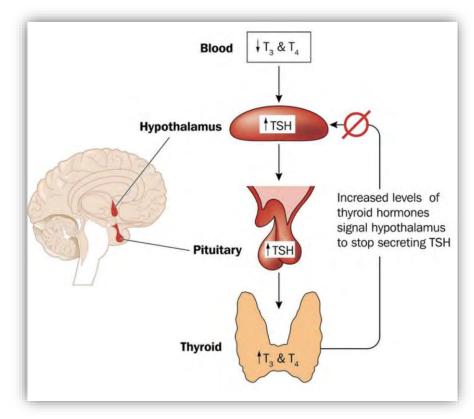

Blood concentrations of lithium usually <u>above 1.5 mEq/L</u>, may lead to increased adverse reactions and toxicity

Lithium monitoring - Preventing adverse effect/intoxication


- ➤ Blood concentrations of lithium (TDM) usually at maintenance: **0.50 0.80 mEq/L** and mania: **0.80-1.20 mEq/L**.
 - ➤ 1 week after the first dose, then weekly in the first month, at least once a month in the next 3–6 months, and every 3–6 months thereafter.
- ➤ Use in **the elderly at ages over 60 years**, doses and blood levels of lithium are at the low end of the therapeutic range (e.g., maintenance: **0.40–0.60 mEq/L**).
 - ➤ Undesirable effects in the elderly can include: confusion or worsening of cognitive functions, unsteady balance (ataxia), restless movements (akathisia), declining kidney function, hypothyroidism.

Tondo, L. et al. Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord 7, 16 (2019). Calanca A. et al. Vade-Mecum de thérapeutique psychiatrique, Ed. Médecine et hygiene, 2011. Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013

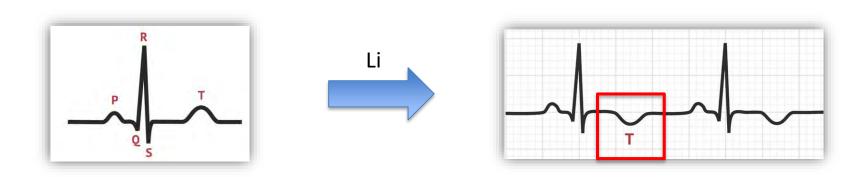
Lithium- Hypercalcemia & hyperparathyroidism


- hyperparathyroidism has been reported with lithium treatment, which leading to drug induced hypercalcemia. Symptoms may include weakness, development of renal stones (calculi), osteoporosis, GI distress and depression.
 - Changes are usually reversible if lithium is discontinued.
 - ➤ Possible mechanism: Lithium thought to inhibit calcium receptors in the parathyroid gland, preventing inhibition of parathyroid hormone (PTH) release. As PTH levels rise, this alters calcium homeostasis leading to hypercalcemia
 - Monitoring recommendation: <u>Calcium and PTH before treatment and at least 1-2x/year</u>

Meehan AD et al. Lithium-Associated Hypercalcemia: Pathophysiology, Prevalence, Management. World J Surg. 2018;42(2):415-424. Szalat A, Maze H, Freund HR. Lithium-associated hyperparathyroidism: report of four cases and review of the literature. Eur J Endocrinol. 2009;160:317–323. UpToDate 2021

Lithium- Hypothyroidism

- Lithium treatment has been associated with hypothyroidism.
 - > Symptoms: lethargy, impaired cognition, weight gain, dry skin, and cold intolerance.
 - ➤ Mechanism: inhibition of iodine uptake in the thyroid and inhibition of thyroid hormone synthesis and release.
 - ➤ Monitoring recommendation: <u>T4, T3 and TSH before</u> treatment and 1-2x/year



UpToDate 2021. Tondo, L. et al. Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord 7, 16 (2019). Calanca A. et al. Vade-Mecum de thérapeutique psychiatrique, Ed. Médecine et hygiene, 2011. Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013

Clinical case - November 2021

Lithium – Cardiac disorder

- Lithium may cause **cardiac arrhythmia**, including **bradycardia**, sinoatrial dysfunction (SA block), **abnormal T waves on ECG** (T-wave inversion). Additional cardiovascular affects have occurred, including peripheral **edema**, **hypotension**, and cardiovascular collapse.
- Mechanism: Dose-dependent; affects Na/K channels in the myocardium and leads to decreased intracellular potassium levels.
 - Monitoring recommendation: <u>ECG</u> before Lithium treatment.

UpToDate 2021. Mehta N, Vannozzi R. Lithium-induced electrocardiographic changes: a complete review. Clin Cardiol. 2017;40(12):1363-1367. Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013

Lithium – Pregnancy and weight gain

- > Pregnancy: Not indicated due to the effects of lithium on the fetal heart.
 - > Recommendation: **pregnancy test** before starting the treatment.

- > Weight monitoring: regularly.
 - > Weight gain on lithium would be 10 kg over 10 years in 67% of patients.

Zimmermann U, Kraus T, Himmerich H, . Epidemiology, implications and mechanisms underlying drug-induced weight gain in psychiatric patients. J Psychiatr Res 2003;37:193–220. UpToDate 2021. Consulted 10.2021: https://lecrat.fr/spip.php?page=article&id_article=360

Lithium – Monitoring resume

- ➤ Blood levels: creatinine (for kidney function), sodium, potassium, calcium, thyroid (TSH, T4, T3) and parathyroid hormones (PTH) should be measured before starting the treatment and at least, once or twice a year thereafter
- ➤ Blood concentrations of lithium: 1 week after the first dose, then weekly in the first month, at least once a month in the next 3–6 months, and every 3–6 months thereafter. maintenance: 0.50 0.80 mEq/L and mania: 0.80-1.20 mEq/L
- Weight, ECG (and EEG)
- Pregnancy test before starting treatment

Reflexions in small groups

- What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?
- What symptoms presented by this patient are related to Lithium? Is lithium treatment appropriate?
- What are the alternatives for treating bipolar?
- How to manage hypernatremia in our case?
- What are your clinical propositions?

Neurotoxicity - SILENT

TABLE 3. SILENT Clinical Profile

Typical presentations

- 1. Persistent cerebellar dysfunction
- 2. Persisting extrapyramidal syndromes
- 3. Persisting brainstem dysfunction
- Dementia with varying degrees of organic mental syndromes

Presentation	Ref.	
Atypical Presentations		
Downbeat nystagmus	39	
Retrobulbar optic neuritis	40	
Persistent papilledema	41	
Choreoathetoid movements	31, 50	
Peripheral neuropathy (both motor and sensory)	43, 44, 67, 113	
Myopathy	64	
Blindness (due to central pontine myelinolysis)	99	

- > Side effect: « Rare ».
- Symptoms: Intoxication Lithium without GI effects.
- > Risk factors:
 - Age
 - Women
 - Dose and serums level

Possible with therapeutical serum level!

- Drug combination (ex: Lithium and haloperidol)
- > SILENT diagnostic > Lithium discontinuation.

UpToDate 2021

Adityanjee and al. The Syndrome of Irreversible Lithium-Effectuated Neurotoxicity Clin Neuropharmacol 2005;28:38–49

Nephrogenic Diabetes Insipidus and Hypernatremia

- ➤ Nephrogenic diabetes insipidus (NDI): the ability of the kidney to retain free water may become impaired, leading to dehydration and electrolyte disturbances, most notably hypernatremia.
 - > Chronic lithium intake is one of the most common causes of nephrogenic diabetes insipidus and affects up to 40% of patients treated.
 - > Symptoms of NDI, related to hypernatremia: polyuria, polydipsia, lethargy, and irritability, may progress to muscle twitching, coma, seizures, and death.
 - ➤ Mechanism: Dose- and duration-related. Lithium reduce aquaporin-2 water channels within the collecting duct, causing reduction of water reabsorption.
 - NDI diagnostic Lithium discontinuation

Figure 1. Schéma d'une cellule principale (tube collecteur cortical)

La cellule principale est impliquée dans le transport croisé du Na et du K et la réabsorption d'eau par les aquaporines sous le contrôle de la vasopressine. Au pôle apical, le Na entre passivement par le canal sodique épithélial ENac (voie également empruntée par le lithium qui se substitue au Na) alors que le K ressort passivement par le canal potassique ROMK l (renal outer medulla potassium channel). Le lithium ne pouvant pas ressortir s'accumule dans la cellule inhibant la fonction de GSK3 β . L'inhibition de GSK3 β diminue la quantité d'aquaporines 2 sur la membrane apicale et entraîne une baisse de la réabsorption d'H₂O, indépendamment de la vasopressine. Cette baisse du nombre de canaux hydriques est responsable du diabète insipide néphrogénique.

Rev Med Suisse 2010; 6 : 448-52 UpToDate 2021

Hypothyroidism

- ➤ Side effect: « frequent »
- > Substitution treatment: L-thyroxine
 - > Adult: 1.4-1.6 μg/kg/j
 - > Elderly: 1 μg/kg/j
- > TSH, T4, T3 monitoring after 2 months of treatment
- > Lithium discontinuation not necessary
- ➤ In our case: Dose L-thyroxine increased or lithium discontinuation due to SILENT and possible NDI

TSH [0.270-4.20 mUI/I]	T4 [12.0-22.0 pmol/L]
10.9	11.6

UpToDate 2021

Rev Med Suisse 2010 ; 6 : 2306-11 Rev Med Suisse 2009 ; 5 : 758-62

Bradycardia and hypotension

Date	Blood pressure (systolic and diastolic)	Heart rate
During hospitalisation	BPS: 96-105 mmHg BPD: 63-78 mmHg	67-79 bpm

- > Cause: Hypothyroidism? Lithium induced hypothyroidism?
- > Mechanism: Possibly due to hypothyroidism but still unclear.
- > Treatment: L-thyroxine adjustment?
- > Lithium discontinuation?

Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013.

Oudit GY et al. Lithium-induced sinus node disease at therapeutic concentrations: linking lithium-induced blockade of sodium channels to impaired pacemaker activity. *Can J Cardiol*. 2007;23(3):229-232.

Clinical case - November 2021

Reflexions in small groups

- What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?
- What symptoms presented by this patient are related to Lithium? Is lithium treatment appropriate?
- What are the alternatives for treating bipolar?
- How to manage hypernatremia in our case?
- What are your clinical propositions?

What are the alternatives for treating bipolar?

Bipolar disorder – Treatment efficacy Evidence base

- Mania
- Depression
- Relapse prevention (Mania/Depression)

Médication	Dépression	Manie	Prévention des récidives		
lithium	++	++	++		Gold standard
valproate	?	++	+	Ι'	
lamotrigine	?	-	++		
carbamazépine	+	++	+		
gabapentine	?	-	-		
topiramate	?		?		
aripiprazole		++	++		
olanzapine	++	++	++		Alternatives
rispéridone	+	++	?		for the 3
quétiapine	++	++	++		parameters
lurasidone	++	?	?		
asénapine	?	++	++		

27

Aubry J-M., et al. Psychopharmacologie des troubles bipolaires, Ed. Médecine et hygiene, 2013 Bauer MS. How solid is the evidence for the efficacy of mood stabilizers in bipolar disorder? Essent Psychopharmacol. 2005;6(6):301-18.

Reflexions in small groups

- What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?
- What symptoms presented by this patient are related to Lithium? Is lithium treatment appropriate?
- What are the alternatives for treating bipolar?
- How to manage hypernatremia in our case?
- What are your clinical propositions?

Firstly search the cause...

Table 2. Causes of Hypernatremia

Diagnosis depending on

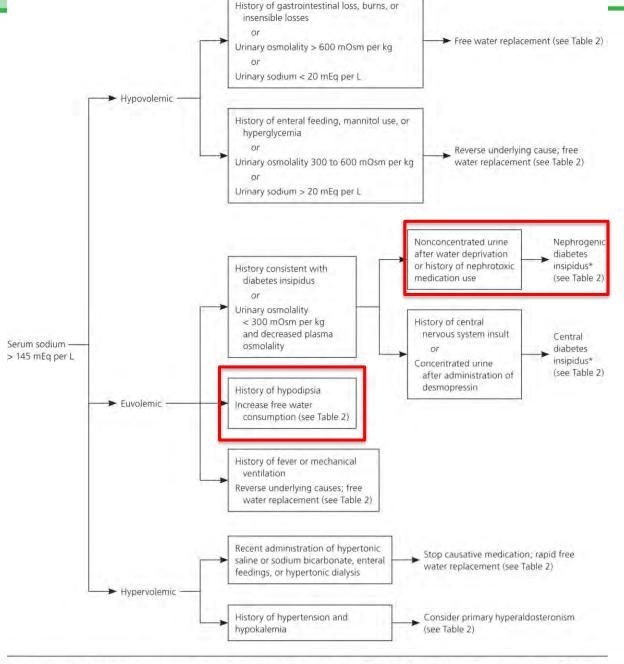
- **Clinical criteria** (blood pressure, edema, etc.)
- Volume state

Cause	Proximate Cause	Findings Supporting Diagnosis			
Inadequate water intake	Lack of access to water	 Altered sensorium, immobility, endotracheal intubation Chronic care facility residence Fluid prescription that does not take into accournsensible losses U_{Osm} > 600 mOsm/kg H₂O 			
Extrarenal hypotonic fluid loss	GI losses or perspiration	 History of diarrhea, febrile illness, gastric suction, or enteric fistula U_{Diam} > 600 mOsm/kg H₂O 			
Renal concentrating defect	Diuretics	History of loop diuretic use Isosthenuric urine			
	Osmotic diuresis	Hyperglycemia with glucosuria Urea-induced osmotic diuresis Isosthenuric urine (eg, recovery from ATN)			
	Central diabetes insipidus	Presence of brain trauma, surgery, tumor, infiltrative disease, or infection including tuberculosis Maximally or submaximally dilute urine Persistently dilute urine during water deprivation test Low copeptin levels U _{Oam} increases in response to desmopressin			
	Nephrogenic diabetes insipidus	Treatment with lithium or demeclocycline, hypercalcemic hypokalemia, renal tubulointerstitial disease, especially sickle cell nephropathy and obstructive uropathy Uosen < 300 mOsm/kg H ₂ O Persistently dilute urine during water deprivation test High copeptin levels Uosen fails to increase in response to desmopressin			
Excessive salt intake	Hypertonic fluid administration	 Receipt of hypertonic sodium bicarbonate solution during cardiac arrest or hypertonic saline solution History of dilution error for powdered feeding formulas in infants Administration of TPN or concentrated enteral tube feeds U_{Oum} > 600 mOsm/kg H₂O U_{Na} > 100 mEg/L 			

Note: Even if not specifically noted, impaired thirst or access to water is typically also present.

Abbreviations: ATN, acute tubular necrosis; GI, gastrointestinal; TPN, total parenteral nutrition; U_{Na}, urine sodium concentration; U_{Oum}, urine osmolality

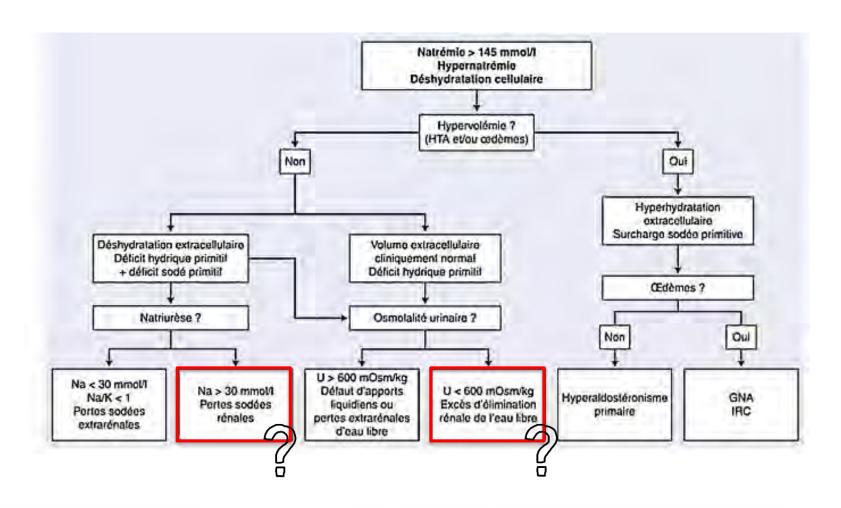
Am J Kidney Dis. 75(2): 272-286.


Treatment of hypernatremia

Condition	Diagnosis	Treatment
Hypovolemic hypernatremia Body fluid loss (e.g., burns, sweating)	Clinical	Free water replacement
Diuretic use	Clinical	Stop diuretic
Gastrointestinal loss (e.g., vomiting, diarrhea, fistulas)	Clinical	Free water replacement
Heat injury	Elevated temperature, myoglobinuria, elevated creatinine level	Intravenous fluids, supportive care
Osmotic diuresis (e.g., hyperosmolar nonketotic coma, mannitol use, enteral feeding)	Elevated glucose level; sodium level often elevated after correction	Correct glucose level, stop causative agent
Post-obstruction	Clinical	Supportive care
Euvolemic hypernatremia Central diabetes insipidus	Clinical history of central nervous system insult; urinary concentration after administration of desmopressin	Treatment is rarely required unless thirst is impaired
Fever	Clinical	Treat underlying cause
Hyperventilation/mechanical ventilation	Clinical	Adjust ventilation
Hypodipsia	Clinical	Increase free water consumption
Medications (e.g., amphotericin, amino- glycosides, lithium, phenytoin [Dilantin])	Medication review	Stop causative medication
Nephrogenic diabetes insipidus	History of nephrotoxic medication use (amphotericin, demeclocycline [Declomycin], foscarnet, lithium, methoxyflurane), failure to concentrate urine after administration of desmopressin	Stop causative medication
Sickle cell disease	Hemoglobin electrophoresis	Treat underlying disease
Suprasellar and infrasellar tumors	Magnetic resonance imaging	Treat underlying disease
Hypervolemic hypernatremia Cushing syndrome	24-hour urinary cortisol and adrenocorticotropic hormone levels, dexamethasone suppression test	Treat underlying disease
Hemodialysis	Clinical history	Treat underlying disease
Hyperaldosteronism	History of hypertension and hypokalemia, plasma aldosterone-to-renin ratio, ³ history of hypertension and hypokalemia	Treatment usually not needed for hypernatremia
latrogenic (e.g., salt tablet or salt water ingestion, saline infusions, saline enemas, intravenous bicarbonate, enteral feedings)	Recent administration of hypertonic saline, enteral feedings, sodium bicarbonate infusion, or hypertonic dialysis	Stop causative medication, rapid free water replacemen

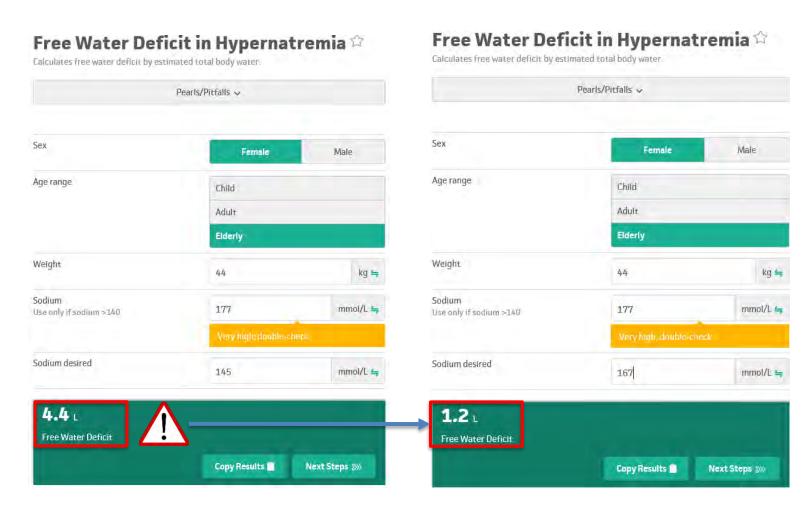
Am Fam Physician. 2015 Mar 1;91(5):299-307.

In our case..



Am Fam Physician. 2015 Mar 1;91(5):299-307.

^{*—}The diagnosis of diabetes insipidus usually requires a combination of water deprivation and a trial of desmopressin. With water deprivation, patients with diabetes insipidus will have increased plasma osmolality but not urinary osmolality. In patients with central diabetes insipidus, urinary osmolality will increase by approximately 200 mOsm per kg after receiving desmopressin. 35


In our case

Osmolality (Urine) [50-1400 mmol/kg H2O]	Sodium (Urine) [mmol/L]
394	82

T. Petitclerc / Néphrologie & Thérapeutique 9 (2013) 38-49

Free water deficit

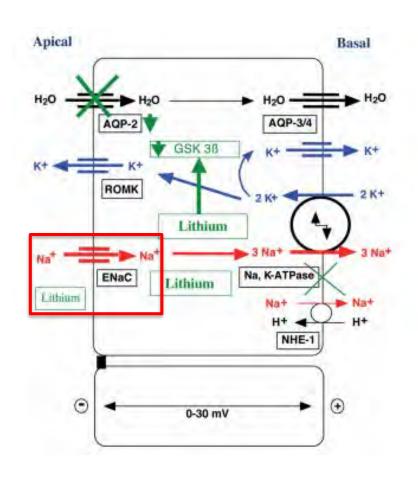
Basic rules

- Natremia correction: decreasing by 10 mmol/L per 24h max. → reduces the risk of cerebral edema and seizures associated with rehydration
- Natremia monitoring every 4-6h

Treatment starting with:

G5% 1.0-1.5L i.v. 24h.

Adjusted volume depending on natremia results


https://www.mdcalc.com/free-water-deficit-hypernatremia

T. Petitclerc / Néphrologie & Thérapeutique 9 (2013) 38–49 Rev Med Suisse 2010; 6: 444-7

33 Clinical case - November 2021

Nephrogenic Diabetes Insipidus

- Lithium discontinuation
- ➤ Thiazide diuretic: hydrochlorothiazide 25 mg po/day
 - ↓ Sodium (cotransporter NaCl) reabsorption
 - ↑ Water reabsorption (↑ Aquaporine 2 expression)

> And/or

➤ Amiloride 5-10 mg po/d: inhibits ENaC canal → ↓ intracellular Lithium (not in CH)

Reflexions in small groups

- What should you watch out for with a patient on Lithium? What needs to be monitored while on lithium?
- What symptoms presented by this patient are related to Lithium? Is lithium treatment appropriate?
- What are the alternatives for treating bipolar?
- How to manage hypernatremia in our case?
- What are your clinical propositions?

Clinical propositions

Discontinuation Lithium:

- ➤ Inappropriate dosing: ¼-0-¼-0
- SILENT and possible NDI (even if therapeutical serum levels)
- > Alternatives: Quetiapine? Olanzapine?
- ➤ Hypothyroidism correction: Increased or maintained dose of L-thyroxine even if lithium discontinuated (thyroid regulation 4-8 weeks)
- > Importal IR? Why? Inappropriate especially due to clinical state.
- > Hypernatremia: Phosphate eff. (suspended) sodium intake (1g NaCl)!

Catamnesis

- ➤ Lithium discontinuated: **Delirium improvement**
- ➤ If mania: valproate 300 mg/d, increased up to 600 mg/d
- > Prevention mania/depression: Maintained quetiapine
- ➤ Hypernatremia: NDI excluded → dehydratation: hypodypsia and infections (SARS-CoV-2 and upper urinary tract infection)

Thank you for your attention!

