Evaluation of exposure to vancomycin in neonates under existing dosing regimens using a population pharmacokinetic approach

Kim Dao¹, Monia Guidi^{2,4}, Pascal André¹, Eric Giannoni³, Aline Fuchs⁵, Marc Pfister⁵ Thierry Buclin¹, Chantal Csajka^{1,2,4}

¹Service of Clinical Pharmacology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; ²School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland; ³ Service of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital, Lausanne, Switzerland. ⁴ Service of Pharmacy, Lausanne University Hospital, Lausanne, Switzerland. ⁵ Pediatric Pharmacology and Pharmacometrics, University of Basel Children's Hospital, UKBB, Spitalstrasse 33, 4031 Basel, Switzerland.

GSAS

UNIVERSITÉ

DE GENÈVE

Introduction & Objectives

- Several neonatal vancomycin dosing algorithms already exist based on various pharmacokinetic (PK) models¹
- +Most dosing approaches (international guidelines, protocols used in neonatal intensive care units (NICUs), published models) use age, renal function and body weight as covariates to establish the initial dosage

Results

Final model

Demonstern	Population mean			
Parameter	Estimate	RSE (%)	IIV(%)	RSE (%)
CL (L/h)	0.268	17	22.5	8
V (L)	0.629	2	-	-
θ _{wT}	0.438	18		
T ₅₀ (week)	46	-		
Hill	3.57	14		
θεπ	0.483	16		

+No consensus for the best suited dosing regimen for neonates is observed

Study aims:

- Build a population PK model of vancomycin in a large cohort of neonates
- Compare by simulation vancomycin exposures under existing dosage recommendations
- Contribute to harmonize vancomycin dosing in neonates admitted in NICUs

Materials & Methods

Data

1848 vancomycin concentrations measured in 405 neonates

Demographics:	gestational	age
---------------	-------------	-----

WT [g]	1200 (879-2335, 462-5660)
BW [g]	1050 (790-2170, 462-4330)
Gender (male, %)	231 (57%)
GA [weeks]	29 (26.7-34.9, 24-42.1)
Preterm (N)	331 (26.4-30.7, 24-36.9)
Full term (N)	74 (38.1-39.2, 37-42.1)
PMA [weeks]	32 (28.3-36.5, 24.6-61.0)
PNA [days]	16.8 (-, 0-245)
CRT [µmol/L]	52 (31-68, 5-276)
SGA (N)	88 (22%)
Apgar score at 5 min	8 (-, 0-10)
pH _v	7.25 (-, 6.93-7.93)
pH _a	7.28 (-, 6.71-7.45)
Antenatal corticoids (N	l) 261 (64%)

Demographics

Simulations

Proportion of neonates within/over target:

Figure 1: Prediction corrected visual predictive check, with vancomycin concentrations (circles) and population prediction (solid line) and 95% prediction interval (semisolid line). Grey fields represent the model-based percentile confidence interval.

	<u> </u>			
and sci chi ose	205° INFT and on	W CHS CHA CHS CH	hose chi to a	a's CIMA WI
Simple U Loit His	S Schent mp		I.D. CUL Ser Sley	al all Hi
atico Asil Kat Kat	child stice		V Janscrinnellie	aletcomt
re va Her He	stell-Hall	WCU.C	appanoout	vet.
an ^h	Qu', O	4.	C.a. NCt	

Figure 2: AUC_{24/MIC} distribution in the simulated neonatal population on Day 1 i.e. after 24 h of treatment (left) and at steadystate (right). Dotted lines represent an AUC_{24/MIC} between 400-700 Boxes represent the median and interquartile ranges, whiskers percentiles 5 and 95. C_{min} at steady-state

•	C _{min} after 24 h		
⁶⁰]		¹⁰⁰ 3	
1		. 90-	
50 -	†	80-	

(GA), postnatal age (PNA), postmenstrual age (PMA = GA + PNA), current body weight (WT), birth weight (BW), gender, small for gestational age (SGA), creatinine (CRT), Apgar score, umbilical venous and arterial pH (pH_v/pH_a) , antenatal steroids

1) Model development

- One-compartment model with first-order elimination (NONMEM[®]) most appropriate
- Body weight allometric scaling on CL and V in the structural model
- Interindividual variability on CL and V + additive and proportional residual error model (intra-patient variability)

2) Simulation Study

- Dosing regimens tested:
- 9 empirical dosing regimens used in NICUs across Switzerland
- 7 international guidelines (Lexicomp, Red Book, BNFC, Neofax, Neonatal Formulary 7, Frank Shann's booklet, Dutch Children Form)

Figure 3: Proportion of neonates with a C_{min} between 10 - 20 mg/L on Day 1 (left) and Day 7 (right). Boxes represent the median and interquartile ranges, whiskers percentiles 5 and 95.

Best regimens on Day 1 according to the target AUC/MIC:

- 1) Janssen et al (73%): dose stratifications with 19 levels f(PMA,BW,WT) + loading dose
- Neonatal Formulary (67%): 5 levels f(PMA, WT)
- 3) NeoFax -Hi-Dose (66%): 7 levels f(PMA, PNA, WT)
- +Adding a loading dose of 25 mg/kg to the Neonatal Formulary regimen improves exposure on Day 1: 78% patients within target
- +A model-based algorithm f(WT, CRT, PMA) directly derived from our model further improves exposure and reaches optimal exposure in 95% of patients (DAY 1) and 75% (DAY 7).
- 4 from the literature: Janssen *et al*⁴, Grimsley *et al*⁵, Capparelli *et* al^6 , McDougal *et al*⁷

Study population: exposure simulated for 405 neonates with the same demographic and clinical characteristics

Efficacy marker (after 24 hours and 7 days of treatment):

- AUC_{0-24h} derived by numerical integration (NONMEM[®])
- Trough concentrations (C_{min})

Targets: AUC_{0-24h}/MIC: > 400 (considering a MIC $\leq 1 \text{ mg/L})^2$

AUC_{0-24h}: < 700 mg·h/L³ 10 - 20 mg/L C_{min}:

* Expressed as a proportion of patients within/over the target

Conclusions

A majority of current neonatal vancomycin dosing regimens are inappropriate to reach optimal AUC_{0-24h}/MIC ratio (400-700) or C_{min} of 10-20 mg/L in a large proportion of patients

Better neonatal regimens leading to higher drug exposure are needed

+Complexity of regimen seems to marginally improve exposure

+Adding a loading dose to a simple dose regimen (e.g. Neonatal Formulary) significantly improves exposure on Day 1

References

1. Marsot A et al. Clin Pharmacokinet. 2012;51(12):787-98. 2. Rybak MJ et al. Pharmacotherapy. 2009;29(11):1275-9. 3. Neely MN et al. Antimicrob Agents Chemother. 2014;58(1):309-16. 4. Janssen EJ et al. Antimicrobial agents and chemotherapy. 2015;60(2):1013-21. 5. Grimsley C et al. Arch Dis Child Fetal Neonatal Ed. 1999;81(3):F221-7. 6. Capparelli et al. J Clin Pharmacol. 2001;41(9):927-34. 7. McDougal et al. Ther Drug Monit. 1995;17(4):319-26. 8. Frymoyer A et al. J Pediatric Infect Dis Soc. 2017.

This work has been partially supported by the Swiss Association of Administration Pharmacists and of Hospital Pharmacists (GSASA)