Population Pharmacokinetic Study of Amoxicillin-Treated Burn Patients Hospitalized at a Swiss Tertiary-Care Center

Anne Fournier^{1,2}, Sylvain Goutelle^{3,4}, Yok-Ai Que⁵, Philippe Eggimann⁶, Olivier Pantet⁶, Farshid Sadeghipour^{1,2}, Pierre Voirol^{1,2}, Chantal Csajka⁷

¹Service of Pharmacy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

²School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.

³Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5558—Laboratoire de Biométrie et Biologie.

Evolutive & Faculté de Pharmacie de Lyon, Lyon, France.

⁴Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie, Lyon, France. ⁵Department of Intensive Care Medicine, University Hospital Bern (Inselspital), Bern, Switzerland.

⁶Service of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

⁷Division of Clinical Pharmacology, Service of Biomedecine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

Abstract

Purpose: The objective of this study was to investigate the population pharmacokinetics (PK) of amoxicillin in ICU burn patients and the optimal dosage regimens.

Methods: This was a prospective study involving 21 consecutive burn patients receiving amoxicillin. PK data were analyzed using nonlinear mixed-effects modeling. Monte-Carlo simulations assessed the influence of various amoxicillin dosage regimens with identified covariates on the probability to achieve a target (PTA) value of time during which free amoxicillin concentrations in plasma exceeded the MIC (*f*T>MIC).

Results: A two-compartment model best described the data. Creatinine clearance (CL_{CR}) and body weight (BW) influenced amoxicillin CL and central volume of distribution (V_1), respectively. The median CL_{CR} (Cockcroft-Gault formula) was high (128 ml/min), with 25% of patients having CL_{CR} of > 150 ml/min. The CL, V_1 , and half-life ($t_{1/2}$) values at steady state for a patient with a CL_{CR} of 110 ml/min and BW of 70 kg were 13.6 liters/h, 9.7 liters, and 0.8 h, respectively. Simulations showed that a target *f*T>MIC of \geq 50% was achieved (PTA > 90%) with standard amoxicillin dosage regimens (1 to 2 g every 6 to 8 h [q6–8h]) when the MIC was low (<1 mg/liter). However, increased dosages of up to 2 g/4 h were necessary in patients with augmented CL_R or higher MICs. Prolonging amoxicillin infusion from 30 min to 2 h had a favorable effect on target attainment.

Conclusions: In conclusion, this population analysis shows an increased amoxicillin CL and substantial CL PK variability in burn patients compared to literature data with nonburn patients. Situations of augmented CL_{CR} and/or high bacterial MIC target values may require dosage increases and longer infusion durations. (This study has been registered at ClinicalTrials.gov under identifier NCT01965340.)

Published in: AAC. 2018 Aug 27;62(9). Contact: <u>chantal.csajka@chuv.ch</u> doi: 10.1128/AAC.00505-18