

Centre hospitalier universitaire vaudois

Infectious Complications after Treatment of Antibody-Mediated Kidney Allograft Rejection: A National Cohort Study

<u>N. Perrottet¹</u>, D. Golshayan², O. Manuel², V. Aubert², M. Koller³, K. Hadaya⁴, L. Bühler⁴, T. Mueller⁵, U. Huynh-Do⁶, S. Dahdal⁶, I. Binet⁷, M. Dickenmann³, S. Schaub³, J. Steiger³, F. Sadeghipour^{1,8}, M. Pascual², M. Fernández-Ruiz²

¹Pharmacy, CHUV, University of Lausanne, Lausanne; ²CHUV, Lausanne; ³USB, Basel; ⁴HUG, Geneva; ⁵USZ, Zurich; ⁶Inselspital, Bern; ⁷KSSG, St. Gallen; ⁸Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva.

Background

Multimodal therapeutic strategies used to treat acute antibody-mediated rejection (AMR) could enhance the risk of infection.

Objectives

• To describe the occurrence of infectious complications

Conclusion

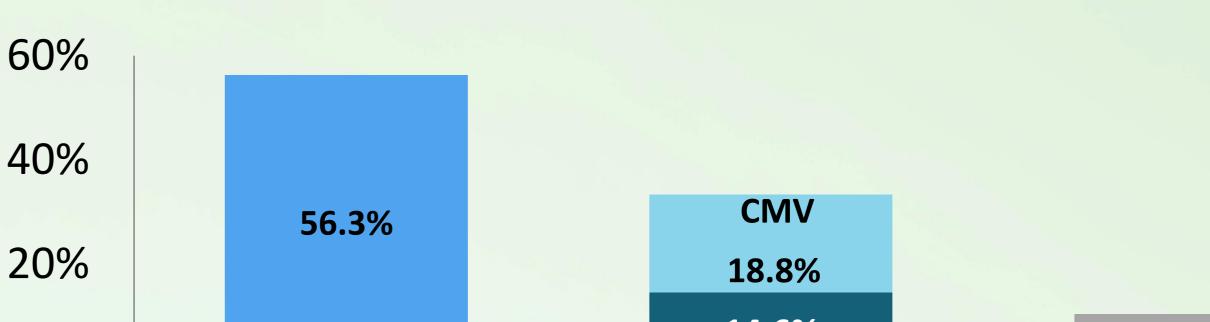
- Infectious complications were common after acute AMR treatment.
- Infection-associated mortality was low (3.1%).
- Plasmapheresis was associated with an increased risk of infection.
- IVIg may reduce the incidence of bacterial infection.
- To analyze the impact of the different therapeutic strategies on the incidence of infection after AMR treatment

Methods

Study population

- All kidney transplant (KT) recipients from the Swiss Transplant Cohort Study (STCS)¹
- Who received a treatment for an acute AMR episode occurring in the first year post-transplantation (Tx) (2008-2014).

Data


- Acute AMR treatment used
- Infectious complications occurring in the 6 months following acute AMR treatment

1 year survival outcomes:

- Graft survival (death-censored) : 90.9%
- Patient survival : 93.8% (2/4 patients died of severe infection)

Infectious complications within 6 months:

- 63.6% (42/66) of transplants
- 2.3 episodes/patients

Episodes of infection (n=96)

Patient and graft survival

Analysis

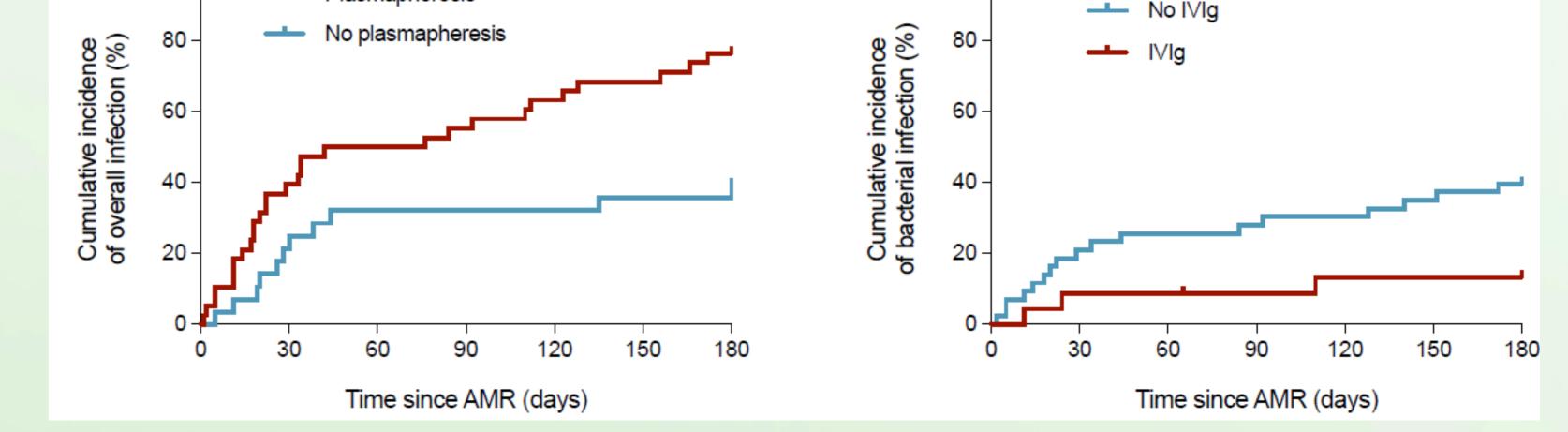
- Risk factors of infection after AMR treatment: uni- and multivariate Cox regression models
- Time-to-event curves: Kaplan-Meier method (log-rank test for inter-group differences)

Results

66/1669 (3.9%) KT recipients were treated for an acute AMR episode in the first year post-Tx.

Value
65 (66 Tx)
56.1
46.1 ± 18.5
27.3
53.0
34.8
33.3
16.7
15.2
98.5
6.6
6.1
3.0
56.1
98.5

0%10.4%BacterialViralFungalFigure 1: Type of infectious complications within the first 6 months after
acute AMR treatment. Main bacterial infections: urinary tract inf. 37.0%,
respiratory tract inf. 20.4%, blood stream inf. 18.5%.


Table 2: Multivariate analysis of risk factors predicting the occurrence of infection

Risk factor	Hazard Ratio (HR)
For overall infection:	
Plasmapheresis	HR: 2.9 (95%CI: 1.5-5.7), P = 0.002
For bacterial infection:	
Induction with Rituximab	HR: 6.6 (95%CI: 2.1-20.7), P = 0.001
IVIg	HR: 0.3 (95%CI: 0.1-1.0), P = 0.053
For opportunistic infection:	
Plasmapheresis	HR: 5.3 (95%CI:1.2-27.7), P = 0.033

100 ₇

a)

۲ 100

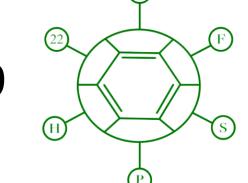

b)

Figure 2: a. Overall infection according to the use of plasmapheresis (log-rank test *P*-value = 0.002), **b.** Bacterial infection according to the use of IVIg (log rank test *P*-value = 0.035). IVIg: intravenous immunoglobulins

Reference

1. Koller M.T., et al. Eur J Epidemiol, 2013. 28(4): p. 347.

22 èmes Journées Franco-Suisses de Pharmacie Hospitalière 2019

Contact: nancy.perrottet@chuv.ch