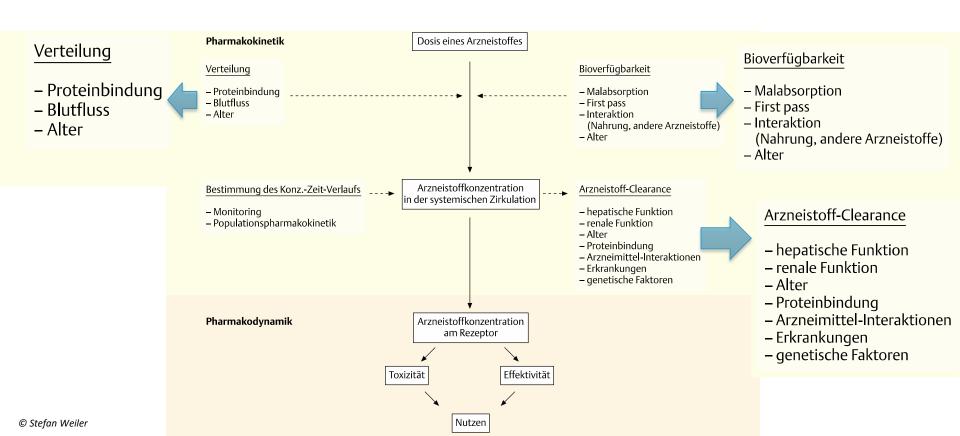
Pharmakologie: Pharmakokinetik und Pharmakodynamik

PD Dr. med. Stefan Weiler, PhD

Einführung



Einleitung

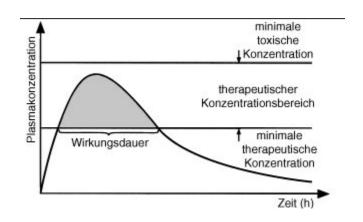
- Was ist eine Substanz?
 - Eine chemische Entität, welche Zellen beeinflusst
- Was ist eine Arzneimittel?
 - Eine Substanz, welche zu diagnostischen, präventiven, oder therapeutischen Zwecken angewandt wird
- Was ist Pharmakologie?
 - Die Lehre von Arzneimitteln
 - Chemie, Biologie, Biochemie, Physiologie, Pathologie, Pathophysiologie, Molekularbiologie, Genetik
 - Krankheitsrelevante Zielstrukturen, Selektion von Substanzen um die Zielstruktur zu verändern, Evaluierung des Wirkung, Maximierung der Wirkung, Minimierung der Toxizität, Beweis der Wirksamkeit, Nutzen.

Pharmakokinetik und Pharmakodynamik

Arzneiformen

zur Steuerung der Wirkstofffreisetzung:

- Tabletten (po)
- Dragees (po)
- Kapseln (po)
- Suppositorien (rektal, vaginal)
- Injektions-/Infusionslösungen (parenteral: intravenös, subcutan, intramuskulär)
- Tropfen (po, lokal)
- Puder, Salben, Schüttelmixturen (cutane)
- Aerosole (inhalativ)


LERNZIELE

- LADME Konzept: Liberation, Absorption, Distribution, Metabolismus, Elimination
- Verabreichungsformen von Medikamenten

Definition

- Wirkung des Organismus auf das Pharmakon
- "was der Körper mit dem Arzneimittel macht"

Pharmakokir Verteilung - Proteinbindung - Blutfluss - Alter Arzneistoffkonzentration in der systemischen Zirkulation kokinetik

Bioverfügbarkeit

- Malabsorption
- First pass
- Interaktion(Nahrung, andere Arzneistoffe)
- Alter

Arzneistoff-Clearance

- hepatische Funktion
- renale Funktion
- Alter
- Proteinbindung
- Arzneimittel-Interaktionen
- Erkrankungen
- genetische Faktoren

PK – Was will ich wissen?

- Wie gebe ich das Medikament?
- Wird es absorbiert?
- Wie viel wird absorbiert?
- Wohin geht es?
- Wie lange bleibt es dort?
- Wie oft muss ich es verabreichen?
- Wie verlässt es den Körper?

Kompartiment

Absorption

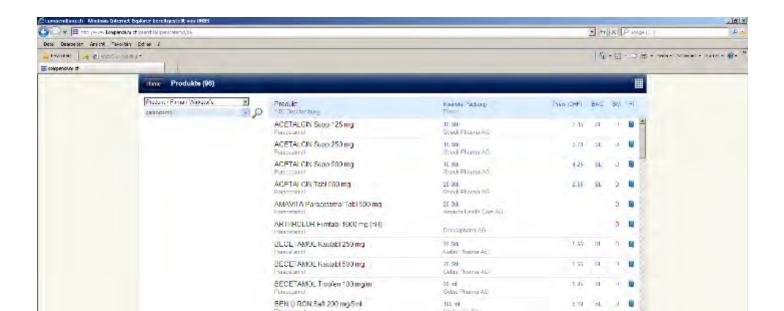
Pharmakokinetik und Pharmakodynamik: Weg, den ein Arzneistoff im Körper nehmen kann (PK) sowie die PD. Die Kurven sind Plasmakonzentrations-Zeit-Kurven zur Charakterisierung der PK; und Dosis-Wirkungskurve zur Charakterisierung der PD

Liberation

Exkretion

Darstellung

Pharmakokinetische Prozesse / Begriffe


- Absorption (Resorption)
 - Bioverfügbarkeit
 - First-pass-Effekt
- Distribution (Verteilung)
 - Verteilungsvolumen
 - Kompartimente
- Metabolismus (Biotransformation)
 - Phase I
 - Phase II
- Elimination (Ausscheidung)
 - Eliminationskinetik nullter Ordnung
 - Eliminationskinetik erster Ordnung
 - Halbwertszeit
 - Clearance
 - Enterohepatischer Kreislauf

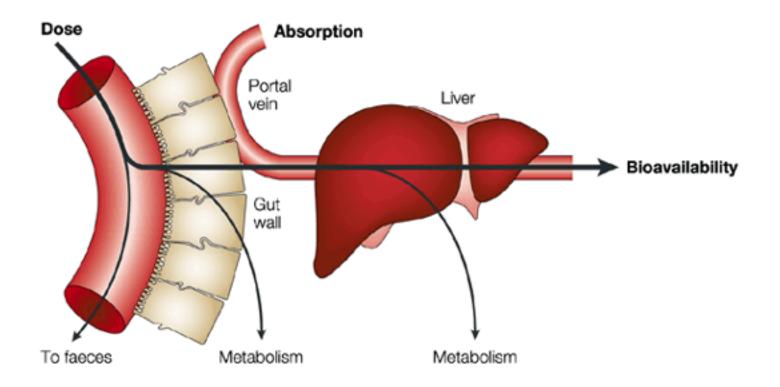
Online Arzneimittelinformation

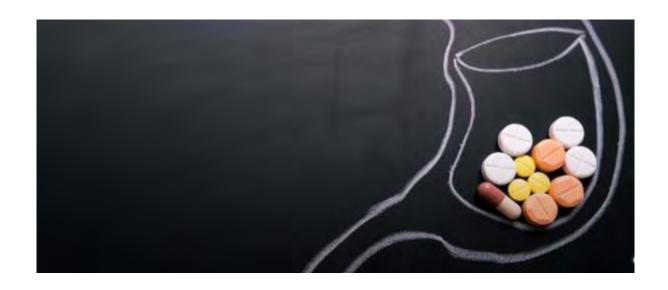
Swissmedic (offiziell)
 http://www.swissmedicinfo.ch

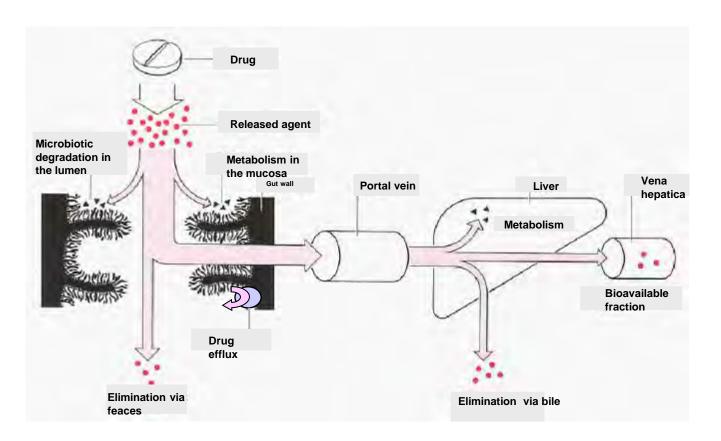
© Stefan Weiler

Documed: http://www.compendium.ch

Liberation


Freisetzung




Nature Reviews | Drug Discovery

Absorption

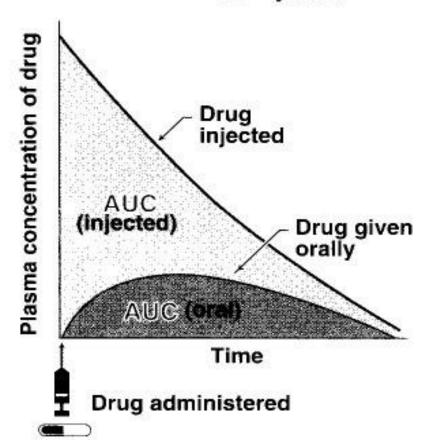
• Resorption

Absorption

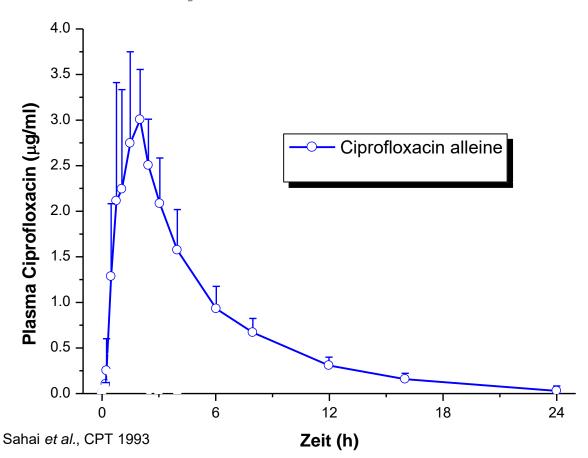
Faktoren für Umfang und Geschwindigkeit der Resorption:

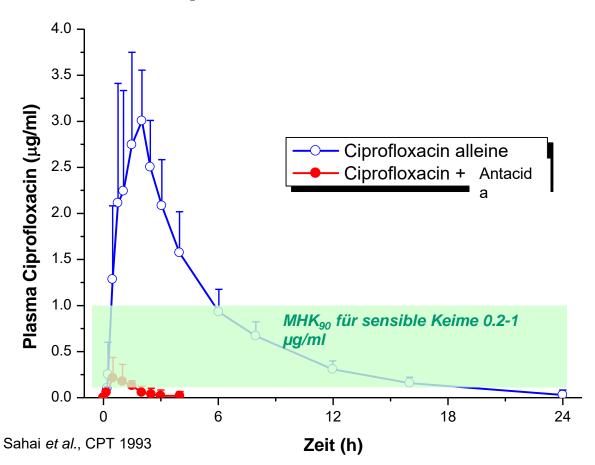
Physikochemische
 Eigenschaften der Substanz

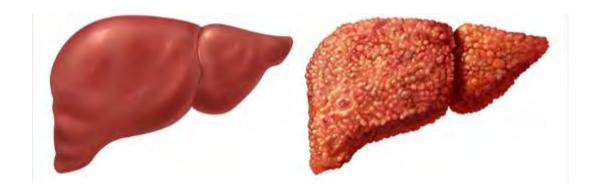
 Pharmazeutische Zubereitung


 Individuelle physiologische und anatomische Voraussetzungen

	Substanzeigenschaften	Wasserlöslichkeit, Lipophilie, Molekülmasse, pK₄
>	galenische Faktoren	Desintegrationszeit, Löslichkeit und Lösungsgeschwindigkeit, galenische Hilfsstoffe
>	Patienten-spezifische Faktoren	Oberfläche und Durchblutung des Magen-Darm-Traktes, pH- Verhältnisse im Magen-Darm- Trakt, Magenentleerungszeit, Passagezeit im Darm, Ausmaß der präsystemischen Elimina- tion
	Einfluss anderer Stoffe	Arzneistoffe, Nahrungsmittel

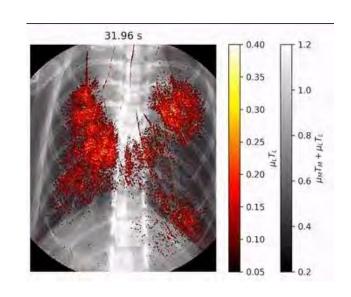

Bioavailability = AUC oral x 100 AUC injected


Bioverfügbar keit


Interaktion Ciprofloxacin ↔ **Antacida**

Interaktion Ciprofloxacin ← Antacida

Leber – Normal - pathologisch


Distribution

Verteilung

Verteilung

- abhängig von
 - physikochemischen Eigenschaften des Moleküls
 - hydrophile Substanzen diffundieren durch
 Poren
 - lipophile Substanzen durch Lipidmembranen
 - Organdurchblutung: Umverteilung von Medikamenten

Einfluss des Löslichkeitsverhaltens auf die Verteilung				
Löslichkeitsverhalten	stark lipophil	amphiphil	stark hydrophil	
Verteilungskoeffizient	>> 1	~ 1	<< 1	
Resorption aus dem Gastrointestinaltrakt	+++ (in Gegenwart von Gallensäuren)	+++	+	
Plasmaproteinbindung	+++	+	+	
		+++ für einige polare Ar ASS oder Sulfonamide	zneistoffe wie Penicillin,	
Penetration von Schranken (z.B. Liquor- oder ZNS-gängigkeit, intrazelluläre Aufnahme)	+++	++	0	
renale Exkretion	+	++	+++	
(hepatischer) Metabolismus	+++	+	0	
enterohepatischer Kreislauf	+++	+	0	
0, +, ++, +++: nicht, wenig, mittel, stark relevant				

Kompartimente

- = getrennte Flüssigkeitsräume
 - Intravasalraum, Interstitium, intrazellulärer Raum
- Blut-Hirn Schranke:
 - = Lipidbarriere durch hochselektive Transportsysteme;
 - andere Barrieren Blut-Retina, Blut-Plazenta

Metabolismus = Biotransformation

- Membrangebundene Enzyme in der Leber, auch in der Niere, Lunge und Intestinum bauen Medikamente um.
- V.a. lipophile Substanzen penetrieren Lipidmembranen und werden intrazellulär metabolisiert. Ziel:
 Verbesserung der Wasserlöslichkeit → Renale Ausscheidung

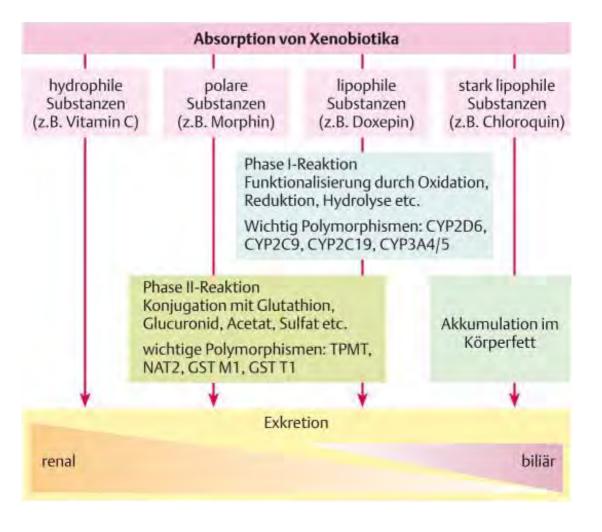
Hepatischer Metabolismus

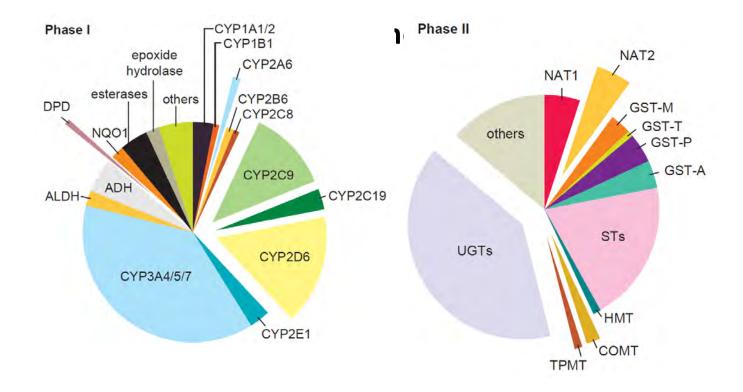
Phase I

- Einführung von funktionellen Gruppen
- Cytochrom P450 System
 - Oxidation
 - Reduction
 - Hydrolysis

 Metabolite aktiv und / oder toxisch

Phase II


- Konjugation mit wasserlöslichen Gruppen
- Glucuronyltransferase
- Sulfotransferase
- N-Acetylation
- Methyltransferase
- Metabolite normalerweise inaktive / nicht-toxisch


Ziel: Inaktivierung von Xenobiotika, Erhöhung der Wasserlöslichkeit Medis können über Phase I und / oder Phase II Reaktionen metabolisiert

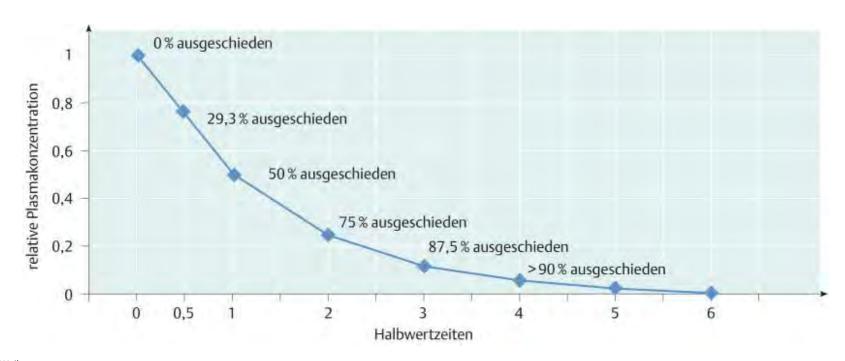
werden

Stoffwechsel von Fremdstoffen:

Je nach Löslichkeit Metabolisierung für Ausscheidung. Ziel ist die Erhöhung der Hydrophilie für die renale Ausscheidung. Die biliäre Ausscheidung spielt eine untergeordnete Roll

Elimination

Medikamente werden unverändert und/oder als Metabolite aus dem Körper ausgeschieden über:


- Nierewasserlöslich (unverändert/aktiver/inaktiver Metabolit)
- Leber/Galle lipidlöslich (idR als Metabolit, aktiv/inaktiv)
- Faeces nicht absorbiertes Medikament
- Lunge flüchtige (Anaesthesie-) Medikamente
- Milch Medikament / Metabolit (aktiv/inaktiv)
- Haut

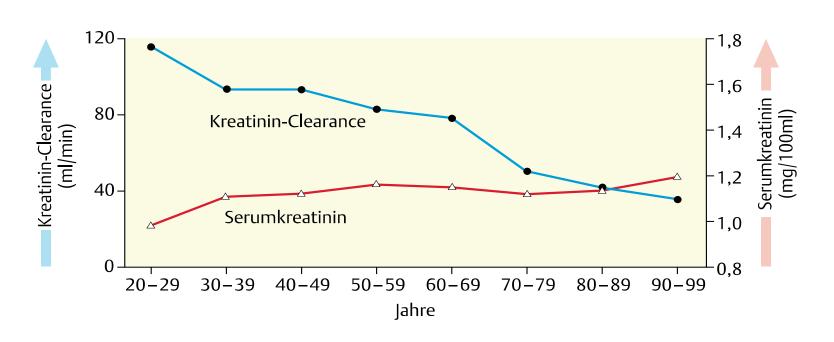
Eliminatonsprozesse lassen sich beschreiben mit einer Kinetik:

- Nullter Ordnung: z.B. Ethanol
- Erster Ordnung: meiste Arzneistoffe

Plasmakonzentration über die Zeit

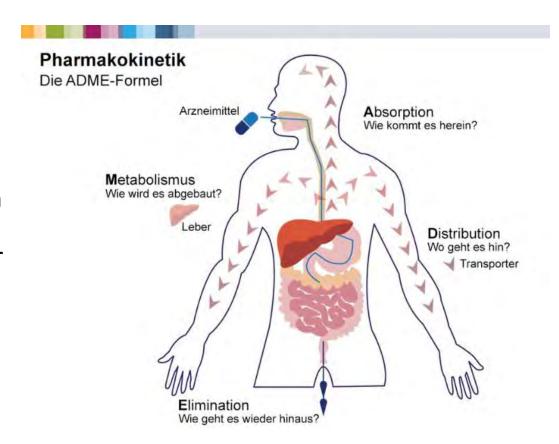
Renale Elimination

- Glomeruläre Filtration: bei Molekulargewicht <15.000, ladungsunabhängig, GFR = Glomeruläre Filtrationsrate = Primärharnvolumen (Bestimmung der Kreatinin-Clearance)
- Tubuläre Sekretion: aktiver Transport (gegen Konzentrationsgradienten) ionisierter Säuren/Basen, sättigbar
- Tubuläre Rückresorption: Diffusion durch Lipidmembranen, ladungsabhängig (lipophile Substanzen);

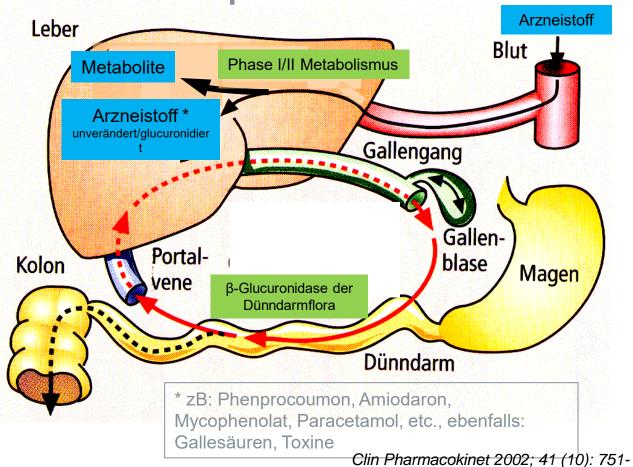

Einstellung des Urin – pH:

- NaHCO3 mit Alkalisierung des Urins

 Verbesserung der renalen Ausscheidung von organischen Säuren (Barbiturate, Salicylate)
- NH4CL zur Ansäuerung des Urins → Verbesserung der renalen Ausscheidung von oragnischen Basen (Opioide, Amphetamin)

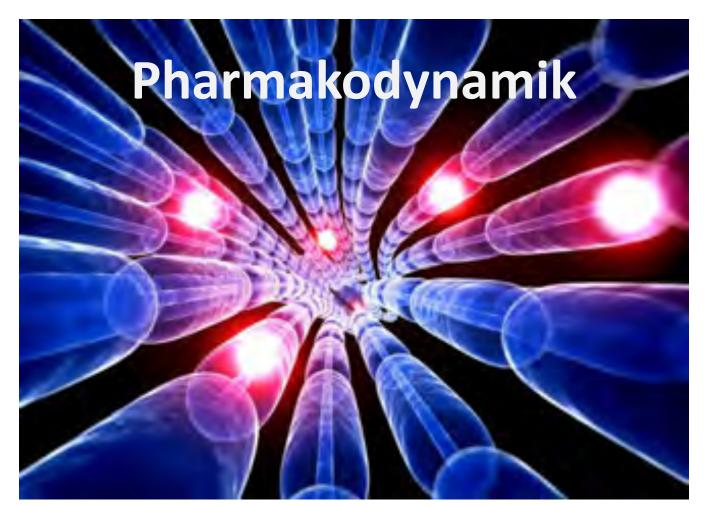


Nierenfunktion im Alter



Biliäre Ausscheidung

- Abh. von
 Mindestmolekülgrösse
 (MG>500) und Polarität der
 Substanz; durch Konjugation
 mit Glukuronsäure / Glutathion
- Enterohepatischer Kreislauf: Substanz über die Pfortader zur Leber in die Galle ins Duodenum, in tieferen Darmabschnitten wieder Rückresorption führt zu langsamer Ausscheidung


Enterohepatischer Kreislauf

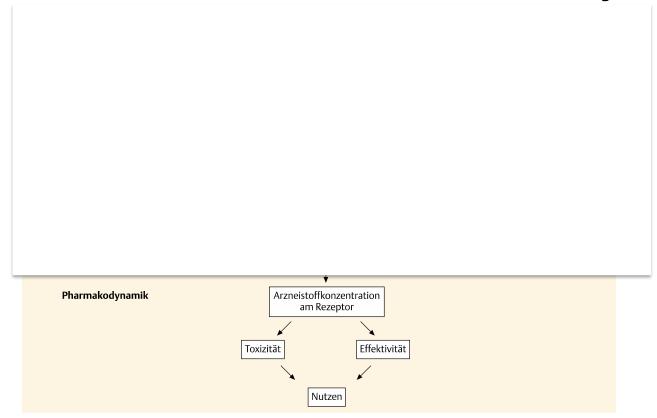
Pumonale Ausscheidung

• Inhalationsnarkotika, Kohlenmonoxid

LERNZIELE

Dosis-Wirkungsbeziehung

PD Definition



- Wirkung des Pharmakons auf den Organismus
- "was das Medikament mit dem Körper macht"

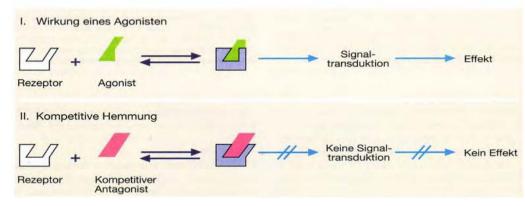
• Wirkprofil:

- Art und Ort der Arzneimittelwirkung;
- Strukturspezifität einer Wirksubstanz, physikochemische Eigenschaften des Moleküls bewirken einen gezielten Effekt

Pharmakokinetik und Pharmakodynamik

PD – Was will ich wissen?

- Funktioniert das Medikament?
- Wie gut funktioniert das Medikament?
- Wie funktioniert das Medikament?
- Wie lange muss ich es verabreichen, damit es funktioniert?
- Gibt es irgendwelche unerwünschten Wirkungen?


Zielstrukturen von Pharmaka **Fremdorganismus Organismus** Bakterien, Pilze, Viren Antibiotika Extrazellulär Zellulär Physikalisch Membranproteine Rezeptoren, Ionenkanäle Laxanzien, osmotische Diuretika, Plasmaexpander β-Agonisten, β-Blocker, Antihistaminika, Lokalanästhetika → Chemisch → Zellskelettproteine Tubulin Antazida, Chelatbildner, Protamin Vincaalkaloide, Colchicin **Enzymatisch** Enzyme

Wirkmechanismus

- Interaktion Pharmakon und Organismus
- Rezeptorinteraktion

 Rezeptoren: intrazelluläre oder membranständige Proteine binden einen Liganden und entfalten eine spezielle Wirkung. Liganden können Hormone, Neurotransmitter, Pharmaka, Toxine, Antigene,

Antikörper sein.

Weitere Wirkmechanismen

<u>Interaktion mit lonenkanäle</u>

Transmittergesteuerte oder spannungsgesteuerte Ionenkanäle mit Änderung der Polarität der Zelle und Erregbarkeit

Interaktion von Enzymen

Biochemische Prozesse durch Inhibition oder Aktivierung beeinflusst, z.B. ACE-Hemmer

Interaktion mit Mikroorganismen

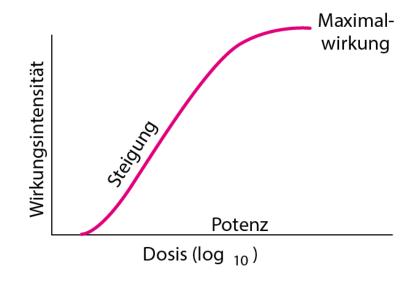
Antibiotika hemmen z.B. bakterielle Zellwandsynthese (Beta-Laktame) oder Eiweisssynthese (Makrolide)

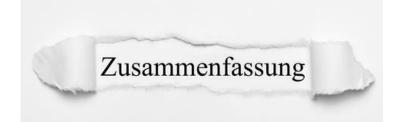
Interaktion mit Transportsystemen

Aktive oder passive Beeinflussung von Resorption, Exkretion oder Inkretion von Substraten; z.B. PPI, Schleifendiuretika

Schlüssel-Schloss-Prinzip

Ligand mit maximaler intrinsischer Aktivität Bindungsstelle für Liganden, Ligand ohne über die die intrinsischer Aktivität Zielstruktur aktiviert wird Ligand mit mittlerer Zielstruktur intrinsischer Aktivität und geringer Affinität Substanz ohne Affinität


physiologischer Ligand


intrinsischer Aktivität

mit mittlerer

Dosis-Wirkungs-Beziehungen

- Zumeist nichtlinear hyperbolisch
- mit steigender Konzentration steigt die Wirkung erst schnell, dann immer langsamer bis asymptotisch gegen das Maximum

• PK: LADME

• PD: Dosis-Wirkung

© Stefan Weiler 48

Vielen Dank für die Mitarbeit!